

Interfaz estándar para la manipulación robótica (SIROM)

SENER AEROESPACIAL Y DEFENSA / ESPACIO / SISTEMAS ELECTROMECÁNICOS / INTERNACIONAL

INTERFAZ ESTÁNDAR PARA LA MANIPULA-CIÓN ROBÓTICA (SIROM) Cliente: H2020 - EC - REA /

PERASPERA

País: Internacional

SIROM es una interfaz robótica «inteligente» y multifuncional que puede ser utilizada **para aplicaciones en órbita y planetarias** y que permite interconectar bloques de construcción y también conectarse al satélite mediante un administrador. La tecnología desarrollada se basa en la estandarización y modularización de los diferentes componentes de una forma integrada (donde se combinan las conexiones mecánicas, térmicas, eléctricas y de datos) o de forma individual.

Sener Aeroespacial es el coordinador del consorcio del proyecto y responsable del desarrollo, diseño, fabricación, montaje e integración de la interfaz mecánica SIROM, incluida la asignación del resto de las interfaces: de datos, eléctrica/de potencia y térmica.

Además, en Sener Aeroespacial nos hemos encargado de la demostración de SIROM en el escenario orbital, incluidos el diseño y la integración de los módulos activos de carga útil (Active Payload Modules) orbitales con los componentes de carga útil correspondientes; y hemos probado con éxito la solución SIROM final mediante dispositivos robóticos, realizando varias operaciones y ensayos en AIRBUS DS (Bremen) y DLR.

ESTA INTERFAZ DE SISTEMA MODULAR RECONFIGURABLE INCLUYE:

- Interfaces mecánicas que conectan los bloques uno a otro.
- Interfaz eléctrica para transmisión de potencia.
- Interfaces térmicas para la regulación del calor.
- Interfaces para la transmisión de datos a través del satélite.

VENTAJAS DE SIROM

- Mejora de la capacidad operativa.
- Logística reducida mediante repuestos comunes y modulares.
- Estándares de mantenimiento comunes.
- Flexibilidad de la arquitectura de la interfaz: infraestructura común necesaria para dar soporte al diseño modular.
- Flexibilidad de la misión (cambios en la configuración).
- Estandarización de las interfaces mecánicas, de datos, eléctricas y térmicas.
- Mantenimiento de los estándares existentes cuando corresponda.
- Introducción en el diseño de aspectos relacionados con la intercambiabilidad e interoperabilidad.

CAMPAÑA DE PRUEBAS DE SIROM

- Pruebas de equipos y submontajes (WP4 MAI SIROM).
- Verificación mecánica de SIROM en ADS Bremen (WP4 MAI SIROM).

- Verificación de datos y de potencia de SIROM en SA (WP4 MAI SIROM).
- Prueba orbital dentro del campo de pruebas OG6 en DLR (validación WP5).
- Prueba planetaria dentro del campo de pruebas OG6 en DFKI (validación WP5).
- Pruebas térmicas de la interfaz térmica.

CONSORCIO DE SIROM

El consorcio del proyecto está formado por Sener Aeroespacial, AIRBUS DS, Thales Alenia Space, Leonardo, la Universidad de Strathclyde, DFKI, Teletel, Space Applications Services y Mag Soar.

Este proyecto ha recibido financiación del programa de investigación e innovación Horizonte 2020 de la Unión Europea en virtud del acuerdo de subvención n. ° 730035.

FICHEROS DESCARGABLES

SIROM version of OG5 & OG7

Formato: PDF

1,4 MB

